
www.manaraa.com

Attribute-Based Encryption with Key Cloning Protection

M. J. Hinek1, S. Jiang1,2, R. Safavi-Naini1, and S. F. Shahandashti3

1 iCORE Information Security Lab, Dept of CS, University of Calgary, Calgary, Canada.
2 School of Computer Science and Technology, University of Electronic Science and Technology of China,

Chengdu 610054, China.
3 School of Computer Science and Software Engineering, University of Wollongong, Australia.

mjhinek@alumni.uwaterloo.ca, jiangshq@calliope.uwaterloo.ca, rei@ucalgary.ca , sfs166@uow.edu.au

November 9, 2008

Abstract. In this work, we consider the problem of key cloning in attribute-based encryption
schemes. We introduce a new type of attribute-based encryption scheme, called token-based attribute-
based encryption, that provides strong deterrence for key cloning, in the sense that delegation of
keys reveals some personal information about the user. We formalize the security requirements for
such a scheme in terms of indistinguishability of the ciphertexts and two new security requirements
which we call uncloneability and privacy-preserving. We construct a privacy-preserving uncloneable
token-based attribute-based encryption scheme based on Cheung and Newport’s ciphertext-policy
attribute-based encryption scheme and prove the scheme satisfies the above three security require-
ments. We discuss our results and show directions for future research.

Keywords: Attribute-Based Encryption (ABE), Access Control, Key Delegation, User Revocation.

1 Introduction

Attribute-Based Encryption (ABE) schemes provide an elegant way of encrypting messages such
that users satisfying an access control policy can decrypt the ciphertext. In an ABE scheme,
users’ private keys are issued by a trusted authority which assigns privileges to the users to
access encrypted content and hence allows the system to be a powerful and efficient approach to
controlling users’ access. There are two flavors for ABE schemes. In a ciphertext-policy (CP-ABE)
scheme, a message is encrypted with a specific access policy determined by the encrypter. For
example, when CP-ABE is used to control access to messages in a bulletin board of a company, the
encrypter can specify that the message may only be decrypted by “technical staff in Department
A”. In a CP-ABE scheme, the users’ keys, issued by the trusted authority, reflects their attributes
and defines their access rights. A user whose attributes matches the decryption policy associated
with a ciphertext can decrypt that ciphertext. A second flavor of ABE systems are key-policy (KP-
ABE) schemes. Here, users’ keys (issued by the systems trusted authority) captures an access
structure (policy) while ciphertexts are associated with attribute sets; again decryption requires
that the users’ policy ‘match’ the attribute set of the ciphertext. In both types of ABE systems
the encryption system can be seen as a secure method of enforcing access control policy.

Linking access rights to users’ private keys means that if a user gives away their private
key, then the system’s access control policy is breached. This is because private keys issued to
users reflect the users’ privileges. This is very different from users leaking their private keys in a
traditional public key encryption (PKE) system. In these latter types of systems, a user’s private
key is chosen by the user and does not reflect any access control policy of the system. Here users

www.manaraa.com

are wary of giving away their private keys because this will give away their personal information.
The reluctance of users to expose such information makes the problem of ‘giving away’ private
keys not very critical in a PKE scheme, while in ABE scheme this presents a serious threat and
security breach. A similar problem exists in broadcast encryption systems where a ciphertext can
be decrypted by a specified subgroup of users. The issue of key cloning in such system is addressed
by introducing mechanism such as decoder fingerprinting and traitor tracing [7, 6].

In all known ABE schemes [18, 14, 10, 3, 16, 2, 19], users can give away their private keys (re-
ferred to as key cloning). There are many examples in which key cloning undermines the intended
purpose of the encryption scheme and thus providing protection against it is an important issue.
For example, Staddon et al. [19] present an ABE scheme for document redaction. Here, parts
of a document are ‘blacked-out’ by encrypting them with the ABE scheme. Only users with at-
tributes satisfying the decryption policy of the redacted document are then able to decrypt these
blacked-out regions and fully read the document. For instance, legal documents might black-out
the names of minors in a report. The decryption policy might specify that only law enforcement
personnel, judges, or high ranking politicians are able to decrypt this information. If a decryption
key is leaked to the press in such a scenario, the privacy of the minors in the document are
violated and perhaps local laws too. Another suggested use for ABE schemes, by Bethencourt et
al. [3], is for encryption of documents by the FBI. In such a scheme, FBI agents encrypt memos
so that only people that have certain credentials are able to access it. Since there is no recourse
for delegating keys in the scheme, a low paid agent might be tempted to sell his decryption key to
the press or a private investigator. In both of these examples, ABE provides an elegant solution
to a specific access control problem. However, these examples are ‘secure’ if we assume that no
user clone their private keys.

We note that in existing ABE systems there are many other ways that malicious users can
misuse their keys. For example they can construct pseudo-keys: a private key constructed by a
user A such that, although it looks different from A’s own private key, it allows the holder of the
pseudo-key to decrypt messages that A can decrypt (or possibly only a subset of the ciphertexts
that A can decrypt). It is also possible for users A and B to collude with each other to construct
new keys that can decrypt all (or some) of the ciphertexts that both A and B can decrypt. Even
in ABE systems in which key delegation is a feature, for example [3], there is no mechanism to
revoke the delegated keys or any constraints on who can issue delegated keys. In all of these
scenarios, one or more users of the system can, effectively, issue access rights to another entity
by giving them a key that can decrypt some ciphertexts: a role that in a secure implementation
of the system is designated only to the system trusted authority.

The aim of this work is to address uncloneability of keys and can be seen as a first step towards
the more general problem of protection against key misuse in ABE schemes. We only consider
CP-ABE schemes although our ideas and approaches can be extended to KP-ABE schemes.

1.1 Our Contributions

The discussion above motivates us to consider a new security property for ABE schemes, called
uncloneability, to capture the protection of an ABE system against users who are misusing their
access rights (decryption privileges) by cloning their keys for other entities.

To achieve this security property, we introduce a new type of ABE system called token-
based ABE (tk-ABE) that provides strong disincentive (or deterrence) for users to misuse their
privileges. The intuition is that ABE private keys are impersonal keys and related to users’

2

www.manaraa.com

attributes that are group properties. So users would be willing to share them with their ‘friends’
or because of other incentives. However, if the keys are personalized and can be directly linked to
one’s ‘personal information’ such as a credit card number, there will be a strong incentive for users
not to share them. Thus, we use the concept of self-policing (with penalty of personal information
exposure) to prevent key delegation. We note that without assuming trusted hardware it is always
possible for users to make clones of their private keys and so a protection mechanism against key
delegation will always be in the form of a deterrent rather than a strictly preventative method.

Model: A tk-ABE scheme consist of three types of entities: a Trusted Key Generator (TKG),
a Token Server (TS), and Users. The TKG is a trusted entity that stores the system master key
MK and generates users’ private keys based on the access control policy of the organization. The
TKG also used some user specific personal information b (a credit card for example) to create
token information for each user which is then securely sent to TS who maintains a database of
users in the system (along with each users’ token information). Users will only be enrolled in
the system by presenting their personal information b at the time of key issuance. The system
guarantees that this personal information will never be revealed, learnt or misused even if TKG
is corrupted (at a later time) and colludes with TS. This personal information, however, will
become accessible to anyone in possession of the users’ private key (i.e., the user and any other
entity that the user shares its private key with).

This privacy guarantee is very strong and ensures that each user’s privacy (with respect to
their personal information b) remains intact as long as the user does not misuse their privileges
and provided they can trust TKG at the time of entering the system. In a real-life implementation
the key issuing process can be a trusted process including trusted hardware implementing the
private key derivation algorithm.

Any entity with the system public key PK can encrypt a plaintext message M with some
decryption policy W that is allowable by the scheme. The resulting ciphertext C includes a
ciphertext coupon Ĉ. A user who wants to decrypt C presents the ciphertext coupon Ĉ to TS and
receives a decryption token T that is computed (by TS) using Ĉ and D̂ (for that user). This token
can only be used for decryption by a user whose attributes satisfy the decryption policy of C,
and does not pose a security threat if captured by an adversary. The plaintext can be recovered
provided the user has a private key corresponding to attributes that satisfy the decryption policy
for C and the decryption token T .

Security Properties: The desired security properties for tk-ABE are Ciphertext Indistin-
guishability, Uncloneability and Privacy-Preserving.

Ciphertext Indistinguishability is defined as a game between a challenger and an adversary
similar to the security games in typical ABE schemes, except that oracle access to TS must also
be included. It should be noted that the ciphertext indistinguishability also implies collusion
resistance. That is, two (or more) users in the system cannot work together using their private
keys to decrypt any ciphertext that any of the individual users could not have decrypted alone.

A tk-ABE scheme is said to be uncloneable if any user giving a clone of their private key will
enable the receiver of the cloned information to compute that user’s personal information.

The privacy-preserving property of a tk-ABE scheme requires that the personal information
b remains private even if TKG is corrupted (after a trusted enrollment) and colludes with TS.
By trusted enrollment, we mean that TKG deletes the personal information b as soon as they
complete the registration of the user. We say that a scheme that satisfies the property is privacy-
preserving.

3

www.manaraa.com

Constructions: We give a construction of an uncloneable privacy-preserving tk-ABE scheme
that uses the ciphertext-policy ABE scheme by Cheung and Newport [5] (referred to as the
CN scheme in the sequel) as the base scheme. That is, we convert the CN scheme into a tk-
ABE scheme, by showing how to modify the encryption and decryption algorithms to generate
ciphertext coupons and decrypt using the ciphertext and a decryption token associated with
that ciphertext and a specific user with a set of attributes satisfying the decryption policy. We
prove the security properties of the scheme in standard model. The ideas and methods of this
construction can be used to convert other known CP-ABE schemes ([16]) and key-policy ABE
schemes ([10, 19]). Indeed, we provide a second tk-ABE scheme based on Bethencourt et al.’s
CP-ABE scheme [3] in the Appendix B.

Non-interactive systems and future work: Decryption in tk-ABE system requires inter-
action between users and the token server. This has the drawback of requiring the token server
to be on-line. In Section 6 we discuss non-interactive uncloneable ABE schemes and present a
construction of a non-interactive scheme that provides protection against uncloneability in Ap-
pendix C. Unlike tk-ABE, the non-interactive scheme in its current form is specifically based
on Cheung and Newport’s scheme and extending it to other CP-ABE schemes remains an open
problem.

Key misuse can pose a severe security risk to real-life implementations of ABE schemes. Our
approach to introduce a token server breaks the decryption process into a two step process and
requires interaction with a token server. The trust requirement on this server is minimal in the
sense that the server neither has decryption power nor can extract users’ personal information.
In addition to introducing a deterrence for key delegation, the use of a token server provides a
simple mechanism to revoke users: the TKG can simply inform the TS to remove a user’s entry
from the database.

It is interesting to consider alternative approaches to enforce non-delegatability, such us trace-
ability of users who clone their keys.

1.2 Outline for rest of paper

In Section 2, we discuss related work. Section 3 reviews the main properties of attribute-based
encryption schemes.In Section 4, we formalize our new type of ABE scheme, token-based ABE
schemes. Section 5 contains our tk-ABE construction. In Section 6, we consider non-interactive
uncloneable ABE schemes. Finally, in Section7, we conclude with a discussion of this and future
work.

2 Related Work

Attribute-Based Encryption: Attribute-Based Encryption (ABE) was introduced by Sahai
and Waters [18]. The first concrete ciphertext policy ABE was proposed by Nali, Adams and
Miri [14]. The decryption policies in that work consist of the conjunction of threshold gates, where
the number of gates and the threshold of each is determined at encryption time. Bethencourt et
al. [3], extend Sahai and Waters’ scheme [18] to construct a CP-ABE scheme in which decryption
policies are described by threshold trees. Here, each node in the tree corresponds to a threshold
gate and each leaf corresponds to an attribute. If a user’s attributes satisfies the tree, then they
can decrypt the ciphertext. Another CP-ABE scheme was proposed by Cheung and Newport [5],
in which decryption policies are restricted to a single AND gate, but attributes are allowed to

4

www.manaraa.com

be either positive or negative. This scheme is easily extended to allow for decryption policies
consisting of a disjunction of AND gates by simply encrypting the plaintext once for each AND.

Security Issues of Key Delegation: Recently, Wang et al. [20] consider the security prob-
lems of key delegation in access control systems. Key cloning is a special case of key delegation,
in which the entire key is delegated.

Non-Delegatability: Lipmaa et al. [13] first proposed and formalized the property of non-
delegatability as a requirement for designated-verifier signatures. Our definition of uncloneability
has a similar essence to theirs, in the sense that in both, the ability to generate certain output
implies knowledge of a secret. In our case, the certain output is the decrypted message and the
secret is the user’s sensitive personal info embedded into the system. Closer to our work is digital
signets from Dwork et al. [8]. They add personal information to bind users to decryption as well.
However, their scenario is different, as they need this binding to be small in size.

Broadcast Encryption: Fiat and Naor [9] laid the foundations of broadcast encryption.
These schemes are used to encrypt broadcast content in a way that only a privileged subset of
users can decrypt the content. Key misuse problem is addressed by assuming tamper-resistant
hardware or provisions to trace ‘traitors’ who share their key information. In particular key cloning
is protected by tamper resistant hardware. Assuming tamper resistant hardware for storing keys
provides security against key cloning. However it will result in very restricted applications. In this
paper we proposed a solution that is in fact a deterrence measure, namely leakage of sensitive
information.

Key Revocation: The ability to revoke malicious users in the system has been seen a de-
sirable property for many cryptographic systems including credential systems and access control
systems. An ABE scheme with key revocation was presented by Staddon et al. [19] in 2008 (their
scheme was inspired by Naor and Pinkas [15]). The number of users that can be revoked in their
scheme is fixed. Once this number is exceeded, the system needs to be re-created.

Tokens: Baek et al. [1] formalize the use of token-controlled public key encryption. Our
situation is different, since we require a token to be specific to an individual user, whereas they
allow multiple user use. Our tokens are also more embedded into the system as they depend on
the user’s decryption key.

3 Attribute-Based Encryption (ABE)

Attribute-Based Encryption (ABE) schemes, introduced by Sahai and Waters [18], are an exten-
sion of Identity-Based Encryption (IBE) schemes. We review some basic properties ABE schemes
below.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE): In a CP-ABE scheme,
a user’s private key is determined by the set of attributes S that they possess. A Ciphertext is
created with a specific decryption policy W over the set of possible attributes. If a user’s attributes
satisfy the decryption policy, which we denote by S ∈W , then the user’s private key can decrypt
the ciphertext.

Definition 1 (CP-ABE). A ciphertext-policy attribute-based encryption (CP-ABE) scheme S
is four-tuple of algorithms S = {Setup,KeyGen,Encrypt,Decrypt}. The algorithms are specified as
follows:

5

www.manaraa.com

Setup(`, [n]): Takes as input a security parameter ` and possibly the number of possible attributes
n in the scheme. Outputs the system public key PK and the system private key, called the
master key, MK.

KeyGen(MK, PK, S): The trusted key generator takes as input the master key MK, the system
public key PK, and a user’s attribute set S. Outputs a private key D to the user.

Encrypt(PK, M , W): Takes as input the system public key PK, a plaintext message M , and a
decryption policy W . Outputs the ciphertext C (which includes specifying W).

Decrypt(PK, C, D): Takes as input the system public key PK, a ciphertext C and a user’s
decryption key D. If the user’s attribute set satisfies the decryption policy W , compute and
output a plaintext M .

Key-Policy Attribute-Based Encryption (KP-ABE): In a KP-ABE scheme, the at-
tributes are associated with the plaintext message instead of the user. The decryption policy in a
KP-ABE scheme for each user is specific (perhaps not unique though) to each user and is embed-
ded within each user’s private key. The policy is set by the organization running the ABE scheme
and might, for example, assign decryption policies based on a user’s role in the organization. Each
ciphertext is created with a set of attributes that describes the plaintext. If the attributes of the
ciphertext satisfy the decryption policy of a given user, then that user is able to decrypt it. The
entity encrypting a plaintext does not, in general, know who will be able to decrypt it.

A KP-ABE scheme S, like a CP-ABE scheme, is also defined as a four-tuple of algorithms
S = {Setup,KeyGen,Encrypt,Decrypt}. The algorithms are very similar to that of a CP-ABE
scheme (see [10] for example).

4 Token-Based Attribute-Based Encryption (tk-ABE)

In a token-based ABE scheme, we bind some personal user information into the decryption
process. Since private keys and ciphertexts in a typical ABE scheme are not bound to a user
in the same way as in a typical public key encryption scheme, we introduce tokens and the token
server to bind a user to decryption. In particular, in a tk-ABE scheme, in order for a user to
decrypt any ciphertext, that user must first obtain a decryption token from the token server.
This decryption token is specific to both the ciphertext that the user wishes to decrypt and to
the user. In order for the issued token to be useful to the user (i.e., help the user decrypt the
ciphertext), the user must provide some personal information. The idea is that if a user wishes
to delegate their (cloned) private key, then their personal information is easily exposed, thus
providing a deterrent for key delegation.

More formally, we define a ciphertext-policy tk-ABE scheme as follows:

Definition 2 (CP tk-ABE). A ciphertext-policy token-based ABE (CP tk-ABE) scheme S is
a five-tuple of algorithms S = {Setup,KeyGen,Encrypt,GetToken,Encrypt}. These algorithms are
specified as follows:

Setup(`, [n]): Takes as input a security parameter ` and possibly the number of possible attributes
n in the scheme. Outputs the system public key PK and the system private key, called the
master key, MK.

KeyGen(MK, PK, ID, S, b): The trusted key generator takes as input the master key MK, the
system public key PK, and a user’s information: identification ID, attributes S and personal

6

www.manaraa.com

information b. Outputs a private key D to the user and sends token information about the
user D̂ to the token server. Finally erase b and randomness in generating D̂,D.

Encrypt(PK, M , W): Take as input the system public key PK, a plaintext message M , and a
decryption policy W . Outputs the ciphertext C which includes the decryption policy W and
information needed to compute a ciphertext coupon Ĉ.

GetToken(ID, Ĉ): The token server takes as input the user’s identity ID, and a ciphertext
coupon Ĉ (computed by the user from a ciphertext C possibly using D, b) and computes a
token T using D̂, where D̂ corresponds to the user with identity ID. Return T to the user.

Decrypt(PK, C, T , D, b): Take as input the system public key PK, a ciphertext C, a decryption
token T (corresponding to C and the user) and a user’s private key D and personal information
b. If the user’s private key corresponds to attributes that satisfy the decryption policy for C,
output the plaintext M .

This definition for a ciphertext-policy tk-ABE scheme can easily be modified to define a
key-policy tk-ABE scheme as well.

4.1 Security Model

For a token-ABE scheme to be secure, we require that scheme be ciphertext indistinguishable,
uncloneable and privacy-preserving. We formally define these security properties here.

Ciphertext Indistinguishability: We define security with respect to ciphertext indistinguisha-
bility with the following game, which we call the tk-ABE security game. The game is played
between an adversary and a challenger and is given in Security Game 1.

Initialization: The adversary chooses a decryption policy W that it wishes to be challenged upon.
System Setup: The challenger runs Setup(`,n), for a given security parameter ` and number of attributes n, and

gives the public parameters PK to the adversary.
Phase 1: The adversary is allowed to make polynomially many adaptive queries consisting of

(a) private decryption keys and personal information requests for any user whose attribute set S does not
satisfy W . The adversary specifies ID and S of the user.

(b) private decryption keys for any user whose attribute set do not satisfy W . The adversary specifies ID, S
and b for the user.

(c) token requests for any ciphertext and any user. The adversary specifies bC and a user (ID if already known
user, ID, S, b for new user).

For any quantity that the adversary must specify, it may choose to allow the challenger to choose a random
input instead.

Challenge: The adversary submits two plaintexts M0 and M1 (M0 6= M1) randomly taken from plaintext domain.
The challenger randomly picks α ∈ {0, 1}, and encrypts Mα with decryption policy W . The challenger gives
the ciphertext Cα to the adversary.

Phase 2: The adversary may repeat Query Phase 1.
Guess: The adversary outputs α′ ∈ {0, 1}, and wins if α = α′.

Security Game 1: tk-ABE Security Game.

Since the adversary can simply guess α′ randomly and win the game with probability 1/2,
the advantage of the adversary in this game is defined as ADV := Pr[α = α′]− 1

2 .

7

www.manaraa.com

Notice that the adversary must declare the decryption policy at the start of the game. This
model is called the selective ID model (see [5] for more details). A stronger game would involve
the adversary declaring W in the challenge stage. The formal definition of ciphertext indistin-
guishability that we use for tk-ABE is as follows.

Definition 3 (Ciphertext Indistinguishability). A tk-ABE scheme ∆ is secure against cho-
sen plaintext attacks (CPA) in the selective ID model if all polynomial time adversaries have at
most a negligible advantage in the token-ABE security game.

Notice that ciphertext indistinguishability also implies collusion-resistance. That is, if a tk-
ABE scheme ∆ is ciphertext indistinguishable, then no collection of users in ∆ can combine their
keys to decrypt any ciphertext that any of the individual users could not have decrypted alone.
This follows since the adversary in the tk-ABE security game is allowed to query for multiple
private keys (and hence simulate the colluding users) before and after selecting the plaintexts for
the challenge stage (as pointed out in [5]).

Uncloneability: The intuition of an uncloneable tk-ABE scheme is the following. Suppose Alice
has private key D and personal information b. If Alice gives Bob a copy of her key D (a clone
of D) then Bob can (efficiently) compute Alice’s personal information b. Such a scheme is said
to be uncloneable. We formalize this with the following definition. Here, let B be the domain
of valid users’ personal information and let |B|, the size of this space, be polynomial in ` (the
size/security parameter of the scheme).

Definition 4 (Uncloneability). Let ∆ be a ciphertext-policy tk-ABE scheme. We say that ∆
is uncloneable if the following holds for all users in ∆: Let ID be any user in ∆ with private key
D and personal information b. If D is known then b can be computed in time O(|B|) given access
to the token server TS.

In fact, we can strengthen this definition of uncloneability by relaxing the meaning of a cloned
key. To this end we define a partial cloned key D′ of the key D (denoted by D′ ⊆ D) to be any
unchanged portion of D. A cloned key is then also a partial cloned key. With this definition, we
have the following strengthened notion of uncloneability.

Definition 5 (Strong Uncloneability). Let ∆ be a ciphertext-policy tk-ABE scheme with pub-
lic key PK. We say that ∆ is strongly uncloneable if the following holds for all users in ∆: Let
ID be any user in ∆ with private key D and personal information b. Let D′ ⊆ D be any partial
cloned key of D, C be any valid ciphertext, and W be any policy. If there exists a polynomial time
algorithm F that, given oracle access to GetToken and given input PK, C , ID and D′, outputs
the decryption of C, that is

FGetToken(·,·)(PK,C, ID,D′) = Decrypt(PK,C,GetToken(ID, Ĉ), D′, b),

then there exists an extractor algorithm X that, given oracle access to GetToken and given input
PK, C , ID and D′, outputs user ID’s personal information b in time O(|B|).

Notice that in this definition, we also require that the partial cloned key D′ is sufficient for
user ID to decrypt a ciphertext C using Decrypt. Basically, this notion of uncloneability means
that knowledge of enough components (or bits, or parts) of a user’s private key that enables one
to decrypt a ciphertext is sufficient to compute that user’s personal information.

8

www.manaraa.com

Privacy-Preserving: We formalize our notion of privacy as follows.

Definition 6 (Privacy-Preserving). Let ∆ be a tk-ABE scheme with public key PK and mas-
ter key MK. ∆ is said to be privacy-preserving if for every user with identification ID, private
key D, token information D̂, attribute set S and personal information b, it holds that

Pr[b | PK,MK, ID, S, D̂] = Pr[b | ID, S].

The intuition behind this definition is that a user’s personal information b is no more at risk due
to their membership in the tk-ABE scheme than it would be otherwise. Even the TKG and TS
working together (thus MK and D̂ are known) cannot compute b. This of course assumes that
at key issuance time, the TKG deletes b once it has used it to compute D̂. If a corrupt TKG
keeps this information, then all privacy is lost. Here we assume that a user’s identification ID
and attributes S are known or can be easily obtained.

5 A Privacy-Preserving Uncloneable tk-ABE Scheme

We now present a privacy-preserving uncloneable ciphertext-policy tk-ABE scheme. The scheme
allows for decryption policies that consist of a single conjunction attributes and negated attributes.
The ciphertext contains a component for each attribute in the set of all possible attributes N ,
whether they appear in the conjunction or not. The components correspond to positive, negated
or don’t care attributes. Any attribute not appearing in the decryption policy is considered a
don’t care attribute, as the decryption policy does not depend on the user having or not having
that attribute. For more details,

The algorithms in our tk-ABE scheme are defined as follows:

Setup(`, n): First the bilinear groups in which the scheme will operate are chosen: let G and G1

be bilinear groups of prime order p (where p is an `-bit prime), let g be a randomly chosen
generator of G, and let e : G×G→ G1 be an efficient bilinear map. Next, let N = {1, . . . , n}
be the set of attributes and randomly choose y, t1, . . . , t3n from Zp. The system public key
PK is

PK = 〈Y = e(g, g)y, T1 = gt1 , . . . , T3n = gt3n , g, e,G,G1,N〉,

and the system private key, called the master key, is MK = 〈y, t1, . . . , t3n〉. The system public
key is made public and the master key is given to the trusted key generator TKG.

Note: We assume that elements in G and G1 have binary representation with bitlength `.

KeyGen(MK, PK, ID, S, b): To generate a private decryption key for a user with identifica-
tion ID, attributes S and personal information b, the trusted key generator TKG does the
following: For each attribute i ∈ N , choose a random ri ∈ Zp and compute

Di =

g
ri
ti if i ∈ S (user has attribute i)

g
ri
tn+i if i 6∈ S (user does not have attribute i),

Fi = g
ri

t2n+i (for don’t care attributes in W).

9

www.manaraa.com

Letting r =
∑

i∈N ri, TKG then computes the user’s token information D̂ = g(y−r)/b and
sends 〈ID, D̂〉 to the token server TS. The user’s private key is D = 〈{Di, Fi}i∈N 〉.

Encrypt(PK, M , W): To encrypt a message M ∈ G1 with decryption policy W over I, pick a
random s ∈ Zp (the nonce for the ciphertext) and compute C̃ = MY s = Me(g, g)ys, Ĉ = gs,
and for each attribute i ∈ N compute

Ci =

T si = gsti if i ∈ I, i = i (must have attribute i)
T sn+i = gstn+i if i ∈ I, i = ¬i (must not have attribute i)
T s2n+i = gst2n+i if i 6∈ I (don’t care about attribute i).

The ciphertext is C = 〈W, C̃, Ĉ, {Ci}i∈N 〉, where Ĉ = gs is the ciphertext coupon.

GetToken(ID, Ĉ): The token server retrieves 〈ID, D̂〉 from its database of users and computes
(and outputs) the ciphertext token T = e(Ĉ, D̂) = e(gs, g(y−r)/b) = e(g, g)s(y−r)/b. Here Ĉ is
provided by the user, which is extracted from a ciphertext C = 〈W, C̃, Ĉ, {Ci}i=1..n〉.

Decrypt(PK, C, T , D, S, b): To decrypt a ciphertext C (with decryption policy W over the
literals I) with decryption token T corresponding to C and the user, a user with private
decryption key D, attributes S satisfying the decryption policy W , and private information b
does the following: For each attribute i ∈ N compute Ei = e(g, g)sri where

Ei = e(Di, Ci) =

{
e(gsti , gri/ti) = e(g, g)sri if i ∈ I, i = i, i ∈ S
e(gsti+n , gri/tn+i) = e(g, g)sri if i ∈ I, i = ¬i, i 6∈ S

Ei = e(Ci, Fi) = e(gsti+2n , gri/t2n+i) = e(g, g)sri if i 6∈ I (don’t care).

Computing the product Ẽ =
∏
i∈N Ei =

∏
i∈N e(g, g)sri = e(g, g)s

P
i∈N ri = e(g, g)sr, and

recalling that T = e(g, g)s(y−r)/b, the plaintext is recovered since

C̃

(T)b Ẽ
=

M e(g, g)sy

(e(g, g)s(y−r)/b)b e(g, g)sr
=

M e(g, g)sy

e(g, g)sy−sr e(g, g)sr
= M.

Our construction of a tk-ABE scheme satisfies each of the three desired security properties: ci-
phertext indistinguishability, strong uncloneability and privacy-preserving. Proofs for the security
results are given in Appendix A.

5.1 Efficiency

The overall computational complexity (of all entities combined) is essentially the same as in
the CN scheme, except that the TKG has an additional exponentiation at key generation (for
D̂) for each user, and there is also an additional exponentiation in Decrypt (unmasking T) for
each decryption. The TKG needs to compute O(n) exponentiations for each user (in the KeyGen

10

www.manaraa.com

algorithm) added to the scheme, each user needs to compute O(n) pairing operations and O(n)
multiplications to decrypt a single ciphertext, and the TS needs to compute one paring operation
for each GetToken request. The Encrypt algorithm is identical to the CN scheme and requires O(n)
exponentiations.

Even though the TS only needs to compute one pairing operation per GetToken request, the
number of such requests may be very large. In order to lessen the load of the TS, multiple token
servers can be used, with user’s assigned to a particular server.

There is also a significant communication complexity in our tk-ABE scheme, since each user
must request a token from the TS each time they wish to decrypt a ciphertext. Again, adding
multiple token servers will distribute this cost.

When the number of attributes n is large, the CN scheme (and hence this scheme) is very
inefficient as decryption needs O(n) pairing operations and exponentiations, and both the cipher-
text and private keys have O(n) size. In this situation, the CP-ABE scheme by Bethencourt,
Sahai and Waters [3] is much more efficient. We show how the BSW scheme can be tokenized
(i.e., turned into a tk-ABE scheme) in Appendix B.

5.2 User Revocation

The main intention of introducing a token server to ABE schemes was to create uncloneable
schemes. A side affect of this (introduction of TS) is that revoking a user’s decryption privileges
in a tk-ABE scheme is trivial. Since a user needs a decryption token in order to decrypt any
ciphertext (using their private key), we can simply remove the user’s entry in the token server’s
database. Clearly, a policy for user revocation must be enforced (i.e., who can and cannot revoke
users). By introducing more data into the TS’s database of users, more complex policies can also
be incorporated into tk-ABE schemes also. For example, user’s might be put on ‘probation’ for a
certain period of time in which they are not allowed to be issued decryption tokens. Or perhaps
‘premium users’ in a system are allowed to decrypt content before non-premium users.

6 Non-Interactive Uncloneable CP-ABE

We now propose a CP-ABE scheme that is (strongly) uncloneable without the use of decryption
tokens. This is achieved by adding a single dummy attribute that each entity in the system
possesses and is needed for decryption of any ciphertext. Essentially, all valid decryption policies
for any ciphertext implicitly requires the user to have this attribute. In the scheme, this attribute
(we’ll denote it as the zeroth attribute i0) for a given user will consist of some personal information
about the user (that they will not wish to disclose) appended by some random bits. If a user
distributes a clone of this key (or a partial clone that is able to decrypt) then the user must
reveal this zeroth attribute and hence reveal their personal information. Thus, the uncloneability
property comes from a user not wishing to divulge their personal information.

In Appendix C, we formalize the security model of the non-interactive scheme and present
our construction. A short discussion and comparison of tk-ABE and our non-interactive scheme
is also given.

7 Discussion/Conclusion

ABE schemes provide an elegant method of controlling access to information. We have described
a security weakness in the current definition of ABE systems that makes all known ABE systems

11

www.manaraa.com

what we called ‘delegatable’. That is, the ABE schemes allow users in the system to clone their
keys, or construct keys that bypass the role of the system trusted key generator. We have in-
troduced a new type of ABE scheme, token-based ABE, which provides a disincentive for users
to mis-use their key information (key cloning in particular) by linking any leakage of their ABE
private key to the complete loss of some personal information that the user wants to protect.
We have proposed a security model for tk-ABE by motivating and formalizing three security
properties, ciphertext indistinguishability, uncloneability and privacy-preserving properties, and
presented a tk-ABE scheme. We have proved the security of this scheme in the proposed model.
We have also given a second construction (Appendix B) that provides higher efficiency and is
based on the scheme of Bethencout, Sahai and Waters.

Our scheme is the first ABE scheme to consider key delegation (cloning) as a security threat
and proposes a solution that is practical and in fact adds extra functionality (key revocation)
to the system. It also opens many new interesting avenues for future work, some of which are
outlined below.

Firstly, the methods that we use can easily be extended/modified to any of the other known
ABE schemes (both ciphertext-policy and key-policy) to create a tk-ABE scheme. An open prob-
lem is to construct a tk-ABE scheme that is not based on an existing ABE scheme using new
techniques.

Secondly, our solution introduces a token server that issues tokens that are specific to a
user requesting them and is necessary for decryption of a ciphertext. While we have presented
a non-interactive scheme, it remains an open question if a non-interactive ABE scheme can be
constructed using other known ABE schemes as a base (see Appendix C.4).

Thirdly, in a tk-ABE scheme, the deterrence for key cloning is obtained by adding the token
server (and decryption tokens). The computational load on the token server can be quite high if
many users request decryption tokens. One possible research direction to address this is to find a
method in which the communication and computational overhead for issuing a token by the TS
is very small, like in the token-controlled PKE of Baek et al. [1]. In this way, a tk-ABE scheme
would have minimal TS costs.

Fourthly, the schemes we present only offer security against key delegation of cloned keys. An
open (and important) problem is to create uncloneable schemes for any kind of key delegation
(including pseudo-keys and keys created by colluding users).

Finally, and at a more fundamental level, is the issue of providing secure support for delegation
in ABE systems. The ability to delegate keys may be required in some systems (hierarchical
schemes for example). However, in a secure system with key delegation, a delegation policy must
be well defined in advance and enforced by the system. All current ABE systems implicitly
support on open delegation policy in the sense that they allow a user to clone their key, or give
away part of their keys and their associated decryption power. Our approach may be seen as a
closed approach in the sense that only the TKG can allocate keys and register new users and any
mis-use of ABE keys will endanger an individuals personal information. A challenging research
direction is to allow defining delegation policies for users and ensuring that it is enforced.

References

1. J. Baek, R. Safavi-Naini and W. Susilo, Token-Controlled Public Key Encryption. R. H. Deng, F. Bao, H. Pang
and J. Zhou (Eds): ISPEC 2005, LNCS 3439, pp. 386–397, 2005.

2. J. Baek, W. Susilo and J. Zhou, New Constructions of Fuzzy Identity-Based Encryption. ASIACCS 2007.

12

www.manaraa.com

3. J. Bethencourt, A. Sahai and B. Waters, Ciphertext-Policy Attribute-Based Encryption. IEEE Symposium on
Security and Privacy, pp. 321–334, 2007 (Oakland 2007).

4. M. Chase, Multi-authority Attribute Based Encryption, TCC 2007, LNCS 4392, pp. 515–534, 2007.

5. L. Cheung and C. Newport, Porvably Secure Ciphertext Policy ABE. ACM Conference on Computer and
Communications Security, pp. 456–465, 2007 (CCS’07).

6. Benny Chor, Amos Fiat, Moni Naor. “Tracing traitors”. Advances in Cryptology - CRYPTO 94. LNCS 839:
257-270. Springer. 1994.

7. Fingerprinting Long Forgiving Messages, G. R. Blakley, C. Meadows and G. B. Purdy. Advances in Cryptology
- CRYPTO ’85. LNCS 218: 180-189, 198.

8. C. Dwork, J. B. Lotspiech and M. Naor, Digital Signets: Self-Enforcing Protection of Digital Information
(Preliminary Version), STOC 1996, pg. 489–498, 1996.

9. Amos Fiat and Moni Naor. “Broadcast Encryption”. Advances in Cryptology: CRYPTO 1993. LNCS 773:
480–491. 1993. (Extended version available at: http://www.wisdom.weizmann.ac.il/∼naor)

10. V. Goyal, O. Pandey, A. Sahai and B. Waters, Attribute-Based Encryption for Fine-Grained Access Control
of Encrypted Dada. ACM Conference on Computer and Communications Security, pp. 89–98, 2006 (CCS’06).

11. J. Katz, A. Sahai and B. Waters, Predicate Encryption Supporting Disjunction, Polynomial Equations, and
Inner Products. N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 146–162, 2008.

12. D. Khader, Attribute Based Group Signature with Revocation. Cryptology ePrint Archive, Report 2007/241,
2007. Available online at http://eprint.iacr.org/

13. H. Lipmaa, G. Wang and F. Bao, Designated Verifier Signature Schemes: Attacks, New Security Notions and
a New Construction. L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi and M. Yung (Eds): ICALP 2005,
LNCS 3580, pp. 459–471, 2005.

14. D. Nali, C. Adams and A. Miri, Using Threshold Attribute-Based Encryption for Practical Biometric-Based
Access Control. International Journal of Network Security, vol. 1, no. 3, November, 2005, pp. 173-182.

15. M. Naor and B. Pinkas, Efficient Trace and Revoke Schemes. Y. Frankel (Ed.): Financial Cryptography 2000,
LNCS 1962, pp. 1–20, 2000.

16. R. Ostrovsky, A. Sahai and B. Waters, Attribute-Based Encryption with Non-Monotonic Access Structures.
Cryptology ePrint Archive, Report 2007/323, 2007. Full version of CCS 2007 paper (to appear). Available
online at http://eprint.iacr.org/

17. M. Pirretti, P. Traynor, P. McDaniel and B. Waters, Secure Attribute-Based Systems. ACM Conference on
Computer and Communications Security, pp. 99–112, 2006 (CCS’06).

18. A. Sahai and B. Waters, Fuzzy Identity-Based Encryption. R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494,
pp. 457–473, 2006.

19. J. Staddon, P. Golle, M. Gagné and P. Rasmussen, A Content-Driven Access Control System. K. E. Seamons,
N. McBurnett and T. Polk (Eds): IDtrust 2008, ACM International Conference Proceeding Series, vol. 283,
pp. 26–34, 2008.

20. Q. Wang, N. Li and H. Chen, On the Security of Delegation in Access Control Systems, S. Jajodia and J.
López (Eds): ESORICS 2008, LNCS 5283, pp. 317–332.

21. D. Yao, N. Fazio, Y. Dodis and A. Lysyanskaya, ID-Based Encryption for Complex Hierarchies with Appli-
cations to Forward Security and broadcast Encryption. ACM Conference on Computer and Communications
Security, pp. 354–363, 2004 (CCS’04).

A Security Proofs

We now show that our scheme satisfies the desired security properties. To prove ciphertext indis-
tinguishability, we reduce the problem to another (believed) hard problem: the Decisional Bilinear
Diffie-Hellman (DBDH) problem. In particular, we rely on the following assumption.

Assumption 1 (DBDH) Let G, g ∈ G,G1 and e : G × G → G1 be defined as above. Sup-
pose a challenger chooses a, b, c, z ∈ Zp uniformly at random. The Decisional Bilinear Diffie-
Hellman (DBDH) assumption is that no polynomial-time adversary is able to distinguish the tuple
〈ga, gb, gc, e(g, g)abc〉 from the tuple 〈ga, gb, gc, e(g, g)z〉 with more than a negligible advantage.

13

www.manaraa.com

We say that 〈A = ga, B = gb, C = gc, Z〉 is a DBDH instance (or challenge) and the DBDH
problem is to decide if Z = e(g, g)abc or Z = e(g, g)z. With this, we can state our first security
result. The advantage in solving the DBDH problem is the probability of success minus 1/2 (since
one can always guess).

Theorem 2. Our scheme is secure against chosen plaintext attacks (CPA) in the selective ID
model, provided that the Decisional Bilinear Diffie-Hellman (DBDH) assumption holds.

Proof. Our proof is modified from [5]. Let A denote an adversary who can win the tk-ABE
security game with non-negligible advantage ε. We construct a simulator S that uses A to help it
solve the DBDH problem with non-negligible advantage ε/2. This is a contradiction if the DBDH
assumption holds, so we conclude that such an A cannot exist.

Suppose S is given a DBDH challenge 〈A,B,C,Z〉 = 〈ga, gb, gc, Z〉, where Z = e(g, g)abc or
Z = e(g, g)z for (uniformly chosen) random a, b, c, z ∈ Zp. S will simulate our tk-ABE scheme in
the tk-ABE security with A playing the game as follows:

Init: A gives S a challenge access policy W over the literals I ⊆ N .

Setup: S implicitly sets y = ab (unknown), by letting Y = e(A,B) = e(g, g)ab. For each i ∈ N ,
S chooses random αi, βi, γi ∈ Zp computes the Ti according to

i ∈ I i 6∈ I
i = i i = ¬i

Ti gαi Bαi Bαi

Tn+i Bβi gβi Bβi

T2n+i B
γi Bγi gγi

The public parameters
PK = 〈e, g, Y = e(g, g)ab, T1, . . . , T3n〉

is given to A. The master key is (implicitly)

MK = 〈ab, {ti}i=1..3n〉,

where ti = logg Ti(i.e., ti is the exponent of Ti with base g). Some are known to S and some are
not (i.e., those created based on B).

Phase 1: To help S reply to A’s queries, we show how S can generate private keys and token
information for users with attribute sets S∗ that do not satisfy the challenge decryption policy
W . The algorithm NewUser takes as input a user’s ID∗, attribute set S∗ and personal information
b∗ and outputs a valid private key D and token information D̂ for that user.

NewUser(ID∗, S∗, b∗): There must exist a j ∈ I such that either j ∈ S∗ and j = ¬j or j 6∈ S∗
and j = j. S chooses such a j. Without loss of generality, assume j 6∈ S∗ and j = j (i.e., the
user does not have attribute j).

14

www.manaraa.com

For every i ∈ N , S randomly chooses r′i ∈ Zp. Then it sets rj = ab + r′jb and for each i 6= j
it sets ri = r′ib. Finally, it sets r =

∑n
i=1 ri = ab+

∑n
i=1 r

′
ib. Note ri and r are all unknown to

S. However, Di are computed as follows: For i = j,

Dj = A1/βigr
′
j/βj = g(ab+r′jb)/bβj = grj/bβj , since j 6∈ S∗ and j = j, tj+n = bβj .

For i 6= j, when i ∈ S∗

Di =

{
Br′i/αi = gri/ti i ∈ I ∧ i = i, since ti = αi

gr
′
i/αi = gri/bαi (i ∈ I ∧ i = ¬i) ∨ i 6∈ I, since ti = bαi

and when i 6∈ S∗

Di =

{
gr
′
i/βi = gri/bβi (i ∈ I ∧ i = i) ∨ i 6∈ I, since tn+i = bβi

Br′i/βi = gri/βi (i ∈ I ∧ i = ¬i), since tn+i = βi.

For the Fi, when i = j

Fj = A1/γjgr
′
j/γj = g(ab+br′j)/bγj = grj/bγj , since j 6∈ S∗, j = j and t2n+j = bγj .

and for i 6= j, we have

Fi =

{
gr
′
i/γi = gri/bγi i ∈ I, since t2n+i = bγi

Br′i/γi = gri/γi i 6∈ I, since t2n+i = γi.

The private exponent is then D = 〈{Di, Fi}i∈N 〉. For the token information, S computes

D̂ = (
n∏
i=1

B−r
′
i)1/b

∗
= g−

Pn
i=1 r

′
ib/b

∗
= g(ab−r)/b∗ = g(y−r)/b∗ .

The algorithm outputs D, D̂

For user’s with attribute sets that do satisfy the challenge decryption policy W , the adversary is
only allowed to query for decryption tokens. To generate token information for such users, S uses
the following helper function NewToken, defined as

NewToken(ID∗, S∗, b∗): Since A is not allowed to query for this private key, S does not need
to explicitly compute the Di and Fi for user ID, S only needs to generate a valid D̂. To do
this, S randomly chooses r′1, r2, r3, . . . , rn ∈ Zp and sets r1 = ab+r′1 and r = r1 + · · · rn. Thus,
the distribution of the ri are the same here as they are in Decrypt. Therefore, the Di and Fi
are correctly (implicitly) defined. The token information for user ID is then computed as

D̂ = g−(r′1+r2+···+rn)/b∗ = g−(−ab+r1+r2+···+rn)/b∗ = g(y−r)/b∗ .

The algorithm outputs D̂.

Now, to answer A’s queries, Sdoes the following: (note, if A makes the same query twice, or
makes an inconsistent query, A rejects the query)

15

www.manaraa.com

(a) private decryption keys and personal information requests for any user whose attribute set
S does not satisfy W . A specifies ID∗ and S∗. If S 6∈ W , S randomly generates b∗, runs
NewUser(ID∗, S∗, b∗) and gives D to A. S also records 〈ID∗, S∗, b∗, D, D̂〉 for future queries.

(b) private decryption keys for any user whose attribute set do not satisfy W . A specifies ID∗, S∗

and b∗. If S∗ 6∈W , S runs NewUser(ID∗, S∗, b∗) and givesAD. S also records 〈ID∗, S∗, b∗, D, D̂〉
for future queries.

(c) token requests for any ciphertext and any user. A specifies Ĉ and user information. There are
three cases
– If user ID∗ has not already been created and S∗ ∈ W then A submits ID∗, S∗ and b∗

for the user. S runs NewToken(ID∗, S∗, b∗) to obtain D̂ and records 〈ID∗, S∗, b∗, D̂〉 for
future queries.

– If user ID∗ has not already been created and S∗ 6∈ W then A submits ID∗, S∗ and b∗

for the user. S runs NewUser(ID∗, S∗, b∗) to obtain D̂ and records 〈ID∗, S∗, b∗, D, D̂〉 for
future queries.

– If user ID∗ has already been created, A submits ID∗ and S looks up the D̂ already
computed.

In all cases, once S has a D̂ for the user, it computes T = e(Ĉ, D̂) and gives this to A.

Challenge: A gives two different plaintext messages M0 and M1 of the same size to S. S
randomly chooses µ ∈ {0, 1} and encrypts Mµ as follows: (note: the value C used below is from
the DBDH challenge, C = gc, not to be confused with the ciphertext)

C̃ = Zmµ

Ĉ = C = gc

Ci =

Cαi = gcαi i ∈ I ∧ i = i

Cβi = gcβi i ∈ I ∧ i = ¬i
Cγi = gcγi i 6∈ I

The ciphertext, 〈W, C̃, Ĉ, {Ci}i∈N 〉 is given to A.
Notice that if Z = e(g, g)abc, then the ciphertext is a valid ciphertext with nonce s = c. If

Z = e(g, g)z, however, then C̃ is a random element in G1. (It is a valid encryption of the plaintext
Mµe(g, g)ze(g, g)−abc, which will not be M0 or M1 with very high probability, though).

Phase 2: Same as phase 1.

Guess: At the end of game, A guesses that Mµ′ was encrypted. If A guesses correctly (µ′ = µ),
then S answers the DBDH challenge with Z = e(g, g)abc. If A does not guess correctly, S answers
Z = e(g, g)z.

When Z = e(g, g)abc, the ciphertext is a valid encryption of Mµ, with all system parameters
having the same distribution as tk-ABE. Since A has advantage ε in the tk-ABE security game,
A answers correctly with probability ε+ 1/2. Thus, it follows that

Pr[S guesses e(g, g)abc|Z = e(g, g)abc] = Pr[µ′ = µ|Z = e(g, g)abc] = 1/2 + ε.

16

www.manaraa.com

When Z = e(g, g)z, the ciphertext does not correspond to an encryption of M0 or M1 and
hence is an invalid session of the tk-ABE security game. Thus, the advantage that A in the game
does not apply and A’s guess will be random. It then follows that

Pr[S guesses e(g, g)z|Z = e(g, g)z] = Pr[µ′ 6= µ|Z = e(g, g)z] = 1/2.

Thus, S’s advantage in solving the DBDH problem is at least ε/2. o

Theorem 3. Our scheme is (strongly) uncloneable.

Proof. Let ∆ be the ciphertext-policy tk-ABE scheme with public key PK. Let ID be the user
in ∆ with private key D and personal information b, for which we have the partial cloned key
D′ ⊆ D. Let C and W be the valid ciphertext and policy for which we have

FGetToken(·,·)(PK,C, ID,D′) = Decrypt(PK,C,GetToken(ID, Ĉ), D′, b).

Now, the extractor algorithm X does the following: First, using algorithm F , it computes the
plaintext M . Since the Decrypt algorithm works with input D′, X can compute Ẽ = e(g, g)sr with
input PK, C and D′.Recall that the plaintext (in the Decrypt algorithm) is computed by

C̃

(T)b Ẽ
=

M e(g, g)ys

(T)b e(g, g)sr
= M. (1)

Since X has access to GetToken, it can request T = GetToken(ID, Ĉ). With C̃, Ẽ, T and M
known, X simply tries all values of b′ ∈ B (the personal information space) until C̃ = MT b

′
Ẽ,

which happens when b′ = b in time O(|B|) in the worst case. o

Theorem 4. Our scheme is privacy-preserving.

Proof. Consider any user with identification ID, attribute set S, private key D, token information
D̂ and personal information b. Recall that PK is the tk-ABE public key and MK is the master
key. It follows that

Pr[b | ID, PK,MK, D̂, S] = Pr[b | ID, D̂, S],

since PK and MK are chosen independently of b. Recall that D̂ = g(y−r)/b and that the order of
group G1 is q. This, we have

Pr[b | ID, D̂, S] = Pr[b | ID, (y − r)/b mod q, S]
= Pr[b | ID, S],

since y, r and b are independent. o

B A Second tk-ABE Scheme

The privacy-preserving uncloneable tk-ABE scheme in Section 4 is only suitable when the total
number of attributes, n, is relatively small. This follows since the ciphertext size, private key size,
and complexity of decryption are all linear in the total number of attributes.

17

www.manaraa.com

In this section, we present a second privacy-preserving uncloneable token-CP-ABE scheme
that is more suitable when the total number of attributes is large. The scheme is based on the
CP-ABE scheme of Bethencourt et al. [3]. Here, the decryption policy can be any formula that
can be realized by combinations of AND, OR and threshold gates with attributes as inputs. The
decryption policy W is realized by a tree access structure T , where each internal node represents
a single AND, OR or threshold gate, and leaf nodes correspond to the input attributes. For more
details, we refer the reader to [3]. The algorithms that define this scheme are given below.

Setup(`): First the bilinear groups in which the scheme will operate are chosen: let G and G1

be bilinear groups of prime order p (where p is an `-bit prime), let g be a randomly chosen
generator of G, and let e : G×G→ G1 be an efficient bilinear map. Let H : {0, 1}∗ → G be
a hash function. Choosing random y ∈ Zp, the system public key PK and private key, called
the master key, MK are given by

PK = 〈Y = e(g, g)y, g, e,G,G1〉,

MK = 〈gy〉.

PK is made public and MK is given to the trusted key generator TKG.

KeyGen(MK,PK, ID, S, b): To generate a private decryption key for a user with identification
ID, attributes S and personal information b, the TKG does the following: Choose a random
r ∈ Zp, and for each attribute j ∈ S, choose a random rj ∈ Zp The private decryption key for
the user ID is

D = 〈{Dj = grH(j)rj , D′j = grj}j∈S〉.

The TKG computes the user’s token information D̂ = g
y+r
b and sends 〈ID, D̂〉 to the token

server.

Encrypt(MK,M,W): To encrypt a plaintext message M ∈ G1 with decryption policy W , de-
scribed by the tree access structure T , the user does the following. A polynomial qx is chosen
for each node x (including the leaves) in the tree T . These polynomials are chosen in the
following way in a top-down manner, starting from the root node r. For each node x in the
tree, set the degree dx of the polynomial qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1. Starting with the root node r the algorithm chooses a random
s ∈ Zp and sets qr(0) = s. Then, it chooses dr other points of the polynomial qr randomly to
define it completely. For any other node x, it sets qx(0) = qparent(x)(index(x)) and chooses dx
other points randomly to completely define qx. Letting L be the set of leaf nodes in T , the
ciphertext is constructed as

C = 〈W, C̃ = Me(g, g)sy, Ĉ = gs, {Cx = gqx(0), C ′x = H(att(x))qx(0)}x∈L〉.

The ciphertext coupon is Ĉ = gs.
GetToken(ID, Ĉ): The token server retrieves 〈ID, D̂〉 from its database of users and computes

(and outputs) the ciphertext token T = e(Ĉ, D̂) = e(gs, g
y+r
b) = e(g, g)s(y+r)/b.

18

www.manaraa.com

Decrypt(PK,C, ID,D, S, b): To decrypt a ciphertext C (with decryption policy W realized by the
tree access structure T), a user with identification ID, private decryption key D, attributes
S satisfying W , and personal information b does the following: (The decryption algorithm is
a recursive procedure and only the simplest form of the decryption algorithm is described)
First define the recursive algorithm DecryptNode(C,D, x) that takes as input a ciphertext
C = 〈W, C̃, {Cj , C ′j}j∈L〉, a private key D, which is associated with a set S of attributes, and
a node x from T . If the node x is a leaf node then we let i = att(x) and have the base case
as follows: if i ∈ S, then

DecryptNode(C,D, x) =
e(Di, Cx)
e(D′i, C ′x)

=
e(grH(i)ri , hqx(0))
e(gri , H(i)qx(0))

= e(g, g)rqx(0).

If i 6∈ S, then DecryptNode(C, sku, x) = ⊥.
For the recursive case, when x is a non-leaf node, the algorithm DecryptNode(C,D, x) then
proceeds as follows: for all nodes z that are children of x, it calls DecryptNode(C,D, z) and
stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z such that Fz 6= ⊥.
If no such set exists then the node was not satisfied and the function returns ⊥. Otherwise,
compute and return

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z where i = index(z), S′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(
e(g, g)rqx(0)

)∆i,S′x (0) =
∏
z∈Sx

(
e(g, g)rqparent(z)(index(z))

)∆i,S′x (0) (by construction)

=
∏
z∈Sx

e(g, g)rqx(i)∆i,S′x (0) = e(g, g)rqx(0) (using polynomial interpolation).

Using DecryptNode called on the root node r of the tree T , if the tree is satisfied by the
attribute set S, then compute A = DecryptNode(C,D, r) = e(g, g)rqr(0) = e(g, g)rs.
The user then sends (ID, Ĉ) to the token server to obtain the decryption token T = e(g, g)s(y+r)/b.
Using C̃, A, T and b, the plaintext is recovered by computing

C̃A

(T)b
=

C̃e(g, g)rs

(e(g, g)s(y+r)/b)b
=
Me(g, g)yse(g, g)rs

e(g, g)s(y+r)
= M.

B.1 Complexity

The space and computation complexity of this scheme, just as with the previous, is the same as
the scheme that is based on (i.e., Bethencourt et al.’s scheme). In comparison to the previous
scheme, notice that the size of the ciphertext is now linear in the number of inputs to the
formula describing the decryption formula instead of linear in the total number of attributes.
The ciphertext must also, however, contain the access tree T . A user’s private key is now linear
in the number of attributes that they possess instead of linear in the total number of attributes,
and the computational costs are linear in the size of the access tree T instead of linear in the
total number of attributes.

19

www.manaraa.com

B.2 Security

The scheme in this section satisfies all of the three security requirements that we desire for a
token-ABE scheme: ciphertext indistinguishability, uncloneability and privacy-preserving. Due to
space requirements, we only state the security and omit the proofs.

The ciphertext indistinguishability of the scheme follows from Bethencourt et al.’s scheme.
The security model is different from the previous section though. Here, the security game allows
the adversary to choose the decryption policy in which it will be challenged after the Phase 1
queries, so we are no longer in the selective-ID model. We will call this the non-selective-ID model.
While this allows for a more powerful adversary, the underlying assumption that the security is
reduced to is weaker. Here, security is based on the generic bilinear group model. In this model,
an adversary can be shown to have advantage O(q2/p) in the CP-ABE game (choosing W after
Phase 1), where q is the number of group elements received from all queries. For more details,
see [3, Appendix A]. The uncloneability and privacy-preserving properties of the scheme can be
shown in a similar way as the tk-ABE scheme in Section 5.

C Non-Interactive Uncloneable Scheme

In a non-interactive uncloneable CP-ABE scheme, we bind a user’s personal information directly
into the user’s private key. In addition, we require that this personal information that embedded
into the private key must be needed to encrypt any ciphertext (that the user is allowed to decrypt).

C.1 Security Model

We define the three security properties needed for a uncloneable CP-ABE scheme in the non-
interactive model.

As with other CP-ABE schemes, we define security with respect to ciphertext indistinguisha-
bility using a game between an adversary A and a challenger C. The game is given below in
Security Game 2.

Init: The adversary chooses a valid decryption policy W to be challenged upon.
Setup: The Challenger runs Setup(`, n) and gives PK to the adversary.
Phase 1: The adversary can adaptively make polynomially many private key requests for any user with any at-

tribute set S 6∈ W . In these requests, either the adversary provides the personal information b for the private
key request, or the challenger randomly chooses b ∈ B for the new key.

Challenge: The adversary submits two different plaintext messages M0 and M1 of equal length to the challenger.
The challenger randomly chooses c ∈ [0, 1] and gives Encrypt(PK,Mc,W) to the adversary.

Phase 2: The adversary repeats phase 1.
Guess: The adversary guesses c′ ∈ [0, 1] and wins if c = c′.

Security Game 2: Non-Interactive Uncloneable CP-ABE

Since the adversary can simply guess correctly with probability 1/2, the advantage of the
adversary in the game is defined as ADV = Pr[c′ = c] − 1/2. A CP-ABE scheme is said to
be secure against CPA attacks in the selective ID model if no polynomial time adversary has
non-negligible advantage in the above game.

20

www.manaraa.com

The intuition of an uncloneable non-interactive ABE scheme is the same as for tk-ABE except
that we do not require oracle access to the token server here. We define it as follows.

Definition 7 (Uncloneability). Let ∆ be a ciphertext-policy ABE scheme. We say that ∆ is
uncloneable if the following holds for all users in ∆: Let ID be any user in ∆ with private key D
and personal information b. If D is known then b can be computed in time O(|B|).

Again, we can strengthen this definition of uncloneability by relaxing the meaning of a cloned
key. To this end we define a partial cloned key D′ of the key D (denoted by D′ ⊆ D) to be any
unchanged portion of D. A cloned key is then also a partial cloned key. With this definition, we
have the following strengthened notion of uncloneability.

Definition 8 (Strong Uncloneability). Let ∆ be a ciphertext-policy ABE scheme with public
key PK. We say that ∆ is strongly uncloneable if the following holds for all users in ∆: Let
ID be any user in ∆ with private key D and personal information b. Let D′ ⊆ D be any partial
cloned key of D, C be any valid ciphertext, and W be any policy. If there exists a polynomial time
algorithm F that, given input PK, C , ID and D′, outputs the decryption of C, that is

F(PK,C, ID,D′) = Decrypt(PK,C,GetToken(ID, Ĉ), D′, b),

then there exists an extractor algorithm X that, given input PK, C , ID and D′, outputs user
ID’s personal information b in time O(|B|).

Notice that in this definition, we also require that the partial cloned key D′ is sufficient for
user ID to decrypt a ciphertext C using Decrypt. Basically, this notion of uncloneability means
that knowledge of enough components (or bits, or parts) of a user’s private key that enables one
to decrypt a ciphertext is sufficient to compute that user’s personal information.

Definition 9 (Privacy-Preserving). Let ∆ be an uncloneable ABE scheme with public key
PK and master key MK. ∆ is said to be privacy-preserving if for every user with identification
ID, private key D, attribute set S and personal information b, it holds that

Pr[b | PK,MK,D, ID, S] = Pr[b | ID, S].

This definition of privacy-preserving ensures that a user’s personal information b is not more
at risk of being exposed as a result of being a member of the ABE system.

C.2 Construction

We propose a CP-ABE scheme that is non-delegatable without the use of decryption tokens.
This is achieved by adding a single dummy attribute that each entity in the system possesses
and is needed for decryption of any ciphertext. Essentially, all valid decryption policies for any
ciphertext implicitly requires the user to have this attribute. In the scheme, this attribute (we’ll
denote it as the zeroth attribute i0) for a given user will consist of some personal information
about the user (that they will not wish to disclose) appended by some random bits. If a user
delegates their key (or parts of their key needed for decryption) then the user must reveal this
zeroth attribute and hence reveal their personal information. Thus, the non-delegatable property
comes from a user not wishing to divulge their personal information. In the following, let B be
the space of valid personal information.

The four algorithms in the scheme are given below.

21

www.manaraa.com

Setup(`, n): First the bilinear groups in which the scheme will operate are chosen: let G and G1

be bilinear groups of prime order p (where p is an `-bit prime), let g be a randomly chosen
generator of G, and let e : G×G→ G1 be an efficient bilinear map. Next, let N = {1, . . . , n}
be the set of attributes and randomly choose y, t0, t1, . . . , t3n from Zp. The system public key
PK is

PK = 〈Y = e(g, g)y, T0 = gt0 , T1 = gt1 , . . . , T3n = gt3n , g, e,G,G1,N〉,
and the system private key, called the master key, is MK = 〈y, t0, t1, . . . , t3n〉. The system
public key is made public and the master key is given to the trusted key generator TKG.

Note: We assume that elements in G and G1 have binary representation with bitlength `.
Note: This is the same as in our tk-ABE Setup algorithm except for the addition of t0 and T0.

KeyGen(MK, PK, S, b): To generate a private decryption key for a user with identification ID,
attributes S and personal information b, the trusted key generator TKG does the following: If
b 6∈ B then abort. Otherwise, for each attribute i ∈ N , choose a random ri ∈ Zp and compute

Di =

g
ri
ti if i ∈ S (user has attribute i)

g
ri
tn+i if i 6∈ S (user does not have attribute i),

Fi = g
ri

t2n+i (for don’t care attributes in W).

Let m be the bitlength of b. Repeatedly choose a random (`−m)-bit positive integer a until
D0 = a||b ∈ G1, where || denotes concatenation. Let r0 and r be (implicitly) defined as
D0 = gr0/t0 and r =

∑
i=0..n ri. Finally, compute

D̂ =
gy

Dt0
0 g

r1+···+rn
=

gy

gr0+r1+···+rn =
gy

gr
= gy−r,

and output the private decrypting key D = 〈D̂,D0, {Di, Fi}i∈N 〉. The TKG then deletes a, b
and D.

Encrypt(PK, M , W): To encrypt a message M ∈ G1 with decryption policy W over I, pick a
random s ∈ Zp (the nonce for the ciphertext) and compute C̃ = MY s = Me(g, g)ys, Ĉ = gs,
and C0 = T s0 = gst0 . For each attribute i ∈ N compute

Ci =

T si = gsti if i ∈ I, i = i (must have attribute i)
T sn+i = gstn+i if i ∈ I, i = ¬i (must not have attribute i)
T s2n+i = gst2n+i if i 6∈ I (don’t care about attribute i).

The ciphertext is C = 〈W, C̃, Ĉ, {Ci}i=0..n〉.

Decrypt(PK, C, D, S): To decrypt a ciphertext C (with decryption policy W over attributes I),
a user with private decryption key D and attributes S satisfying the decryption policy W
does the following: for each attribute i ∈ N compute Ei = e(g, g)sri where

Ei = e(Di, Ci) =

{
e(gsti , gri/ti) = e(g, g)sri if i ∈ I, i = i, i ∈ S
e(gsti+n , gri/tn+i) = e(g, g)sri if i ∈ I, i = ¬i, i 6∈ S,

22

www.manaraa.com

or, if i is do not care in I (i.e., i 6∈ I),

Ei = e(Ci, Fi) = e(gst2n+i , gri/t2n+i) = e(g, g)sri ,

and also E0 = e(C0, D0) = e(gst0 , gr0/t0) = e(g, g)sr0 . Multiplying all of the Ei together yields

Z =
n∏
i=0

Ei =
n∏
i=0

e(g, g)sri = e(g, g)s
Pn
i=0 ri = e(g, g)sr,

which when multiplied by e(Ĉ, D̂) gives

U = e(Ĉ, D̂)Z = e(gs, gy−r)e(g, g)sr = e(g, g)(s(y−r)+sy) = e(g, g)sy.

The plaintext M can then be revealed by computing

C̃

U
=
Me(g, g)sy

e(g, g)sy
= M.

C.3 Security of Non-Interactive Scheme

Our non-interactive non-delegatable ABE scheme satisfies the three security properties outlined
above (ciphertext indistinguishability, uncloneability, privacy-preserving). We state the results
below, but leave the proofs to the full version of the paper. The ciphertext indistinguishability
follows from the CN-scheme, while the other properties follow closely with the tk-ABE scheme
presented in Section 5.

Theorem 5. Our scheme is secure against chosen plaintext attacks in the selective ID model
provided that the decisional bilinear Diffie-Hellman problem (DBDH) assumption holds.

Theorem 6. Our scheme is uncloneable.

Theorem 7. Our scheme is privacy-preserving.

While this non-interactive scheme satisfies the three security properties, we observe that user’s
in the system (with valid private keys) that have the same attributes can combine their keys by
simply multiplying their keys together (componentwise multiplication) to create a new valid key
corresponding to the same attributes. The component of the new key corresponding to a users
personal information is now the product of the colluding users personal information. Thus, the
colluding users expose their personal information to each other. Without knowledge of one of the
user’s personal information though, the new key does not reveal anything about the colluding
user’s personal information. Thus, this scheme is weaker than the tk-ABE schemes that are
presented earlier.

C.4 Additional Comments

We also note that this non-interactive scheme seems to be specific to Cheung and Newport’s
scheme. The idea behind the transformation (ABE to non-delegatable ABE) does not seem apply
to any of the other known ABE scheme. This is because in the other schemes, typically, a user
can re-randomize their secret key buy multiplying all of the components in their private key by
some random number. In our scheme, we require that a user’s personal information explicitly
appear in the private key. Re-randomization destroys this.

23

www.manaraa.com

C.5 Interactive vs Non-Interactive Uncloneable ABE Schemes

The following table shows which type of non-delegatable scheme is better suited for different
conditions. A 3 denotes that this scheme is suitable for the given condition to be efficient, while
a 7 denotes that the scheme is not well suited for that property/condition.

tk-ABE Non-Interactive
Key revocation 3 7

Communication complexity 7 3

Many attributes 7 3

Based on different ABE schemes 3 7

24

